BERICHT

Transmissions- und Reflexionsgrad einer Verglasung

im Auftrag der Glaswerkstatt Feige

Report ZAE 2 - 0911 - 16 (2011)

Abteilung: Funktionsmaterialien der Energietechnik

BAVARIAN CENTER FOR APPLIED ENERGY RESEARCH

Division: Functional Materials for Energy Technology

ZAE Bayern, Am Hubland, 97074 Würzburg

BERICHT

27. September 2011

Auftraggeber/Projekt: Glaswerkstatt Feige

Riemenschneiderstraße 4

97753 Karlstadt

Ihr Auftrag: vom 15.09.2011

Unser Angebot: vom 14.09.2011

Unsere Auftragsnummer: 203/110131

Gegenstand der Untersuchungen: Transmissions-, Reflexions- und Gesamtenergiedurch-

lassgrad einer Verglasung

Apparatur: UV-VIS-NIR-Spektrophotometer

Perkin-Elmer Lambda 950

Bearbeiter: Dr. Werner Körner

Anzahl Seiten: 6

Abbildungen: 3

Tabellen: 2

1 Untersuchungsgegenstand

Ziel der Untersuchung war die Bestimmung des Transmissions- und Reflexionsgrades beider Seiten sowie des Gesamtenergiedurchlassgrades und des Wärmedurchgangskoeffizients einer Doppelverglasung. Bei der Doppelverglasung mit der Bezeichnung **Guard Iso 2011** handelt es sich um zweimal 3 mm Floatglas, wovon die Außenscheibe eine wellige Glasstruktur aufweist (dem alten Glas nachempfunden) und die Innenscheibe auf der zum Scheibenzwischenraum hin orientierten Oberfläche beschichtet ist. Der Luftgefüllte Scheibenzwischenraum ist 4 mm dick.

2 Messverfahren

Gemessen wurde der normal-hemisphärische (τ_{nh}) Transmissionsgrad sowie der normal-hemisphärische (ρ_{nh}) Reflexionsgrad im Wellenlängenbereich von 250 nm bis 2500 nm. Dazu wurde ein UV/VIS/NIR-Spektrophotometer (Hersteller Perkin-Elmer, Typ Lambda 950, mit Ulbrichtkugelzusatz 150 mm) verwendet. Abbildung 1 zeigt den schematischen Aufbau des Spektrometers bei einer Transmissions- bzw. Reflexionsgradmessung.

Bei der **Transmissionsmessung** wird die Probe an der Eintrittsöffnung der Kugel montiert. Gemessen wird die gesamte in den Halbraum transmittierte Intensität (normal-hemisphärischer Transmissionsgrad τ_{nn}).

Bei der **Reflexionsmessung** wird die Probe an der Austrittsöffnung der Kugel montiert. Das einfallende Licht trifft unter einem Winkel von etwa 8° auf die Probe. Gemessen wird die gesamte in den Halbraum reflektierte Intensität (normal-hemisphärischer Reflexionsgrad ρ_{nh}).

1.Transmissionsmessung

2.Reflexionsmessung

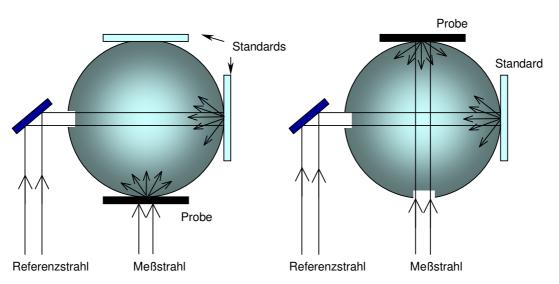
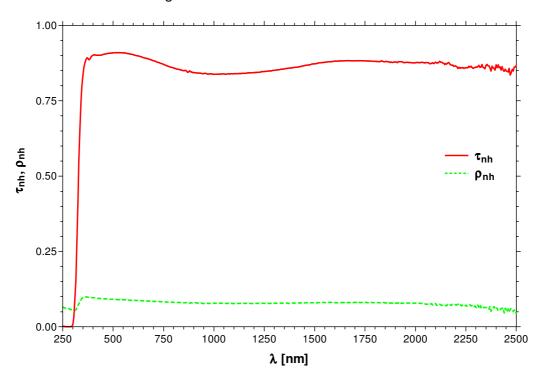


Abbildung 1: Schematischer Aufbau des UV/VIS/NIR-Spektrophotometers.


Die Messgenauigkeit des Spektrophotometers beträgt \pm 0,02.

Aus den spektralen Daten der beiden Einzelscheiben wird nach DIN EN 410¹ der solare, visuelle bzw. UV-Transmissions- und Reflexionsgrad der Doppelverglasung sowie der Gesamtenergiedurchlassgrad berechnet.

3 Ergebnisse

Die Abbildungen 2 und 3 zeigen die spektralen normal-hemisphärischen Transmissions- und Reflexionsgrade der beiden Einzelscheiben, Tabelle 1 die nach DIN EN 410 gemittelten Werte für die solaren, visuellen und UV-Transmissions- und Reflexionsgrade der Einzelscheiben.

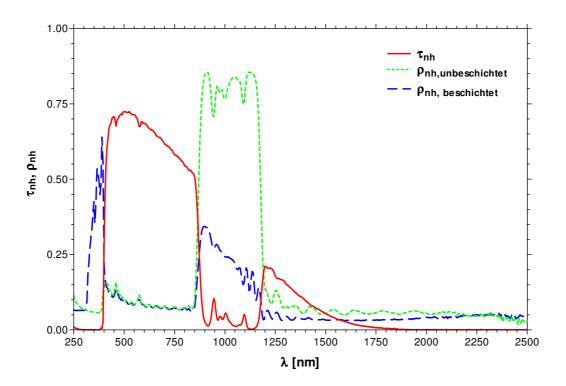

Aus den Daten der beiden Einzelscheiben wurde nach DIN EN 410 und DIN EN 673 die Transmissions- und Reflexionsgrade der Verglasung, der Gesamtenergiedurchlassgrad sowie der U_g-Wert berechnet. Tabelle 2 fasst die Ergebnisse zusammen.

Abbildung 2: Spektraler normal-hemisphärischer Transmissions- und Reflexionsgrad der Außenscheibe.

_

¹ DIN EN 410:1998 "Glas im Bauwesen: Bestimmung der lichttechnischen und strahlungsphysikalischen Kenngrößen von Verglasungen"

Abbildung 3: Spektraler normal-hemisphärischer Transmissions- und Reflexionsgrad der Innenscheibe.

Tabelle 1: Solarer, visueller und UV-Transmissions- und Reflexionsgrad der Einzelscheiben.

Probe	τ _{nh,solar}	τ _{nh ,VIS}	τ _{nh ,UV}	Seite	ρ _{nh ,solar}	ρ _{nh,VIS}	$ ho_{nh,UV}$
Außenscheibe	0,87	0,91	0,71		0,08	0,09	0,09
Innenscheibe	0,42	0,70	< 0,001	unbeschichtet	0,21	0,09	0,06
				beschichtet	0,13	0,09	0,37

Tabelle 2: Daten der Verglasung **Guard Iso 2011:** Solarer, visueller und UV-Transmissionsgrad, solarer Reflexions- und Absorptionsgrad der Außenseite sowie visueller Reflexionsgrad beider Seiten.

				außen		innen	g	U
$ au_{nh,solar}$	τ _{nh ,VIS}	$ au_{nh\;,UV}$	ρ _{nh ,solar}	α_{solar}	$ ho_{nh,VIS}$	ρ _{nh,VIS}		[W/m ² K]
0,37	0,64	< 0,001	0,18	0,45	0,16	0,14	0,61	3,7

Würzburg, den 27. September 2011

Dr. Werner Körner (Bearbeiter)

Dr. Hans-Peter Ebert (Abteilungsleiter)